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Abstract The classical capacity of a quantum channel with arbitrary Markovian corre-
lated noise is evaluated. For the general case of a channel with long-term memory, which
corresponds to a Markov chain which does not converge to equilibrium, the capacity is ex-
pressed in terms of the communicating classes of the Markov chain. For an irreducible and
aperiodic Markov chain, the channel is forgetful, and one retrieves the known expression
(Kretschmann and Werner in Phys. Rev. A 72:062323, 2005) for the capacity.
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1 Introduction

Shannon, in his celebrated Noisy Channel Coding Theorem [5, 22, 23], obtained an explicit
expression for the channel capacity of discrete, memoryless,' classical channels. The first
rigorous proof of this fundamental theorem was provided by Feinstein [8]. He used a packing
argument (see e.g. [10]) to find a lower bound to the maximal number of codewords that can
be sent through the channel reliably, i.e., with an arbitrarily low probability of error. More
precisely, he proved that for any given § > 0, and a sufficiently large number, n, of uses of
a memoryless classical channel, a lower bound to the maximal number, N,, of codewords

IFor such a channel, the noise affecting successive input states, is assumed to be perfectly uncorrelated.
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that can be transmitted through the channel reliably, is given by

Nn > zn(H(X:Y)—é).

Here H (X :Y) is the mutual information of the random variables X and Y, corresponding to
the input and the output of the channel, respectively. Moreover, he also proved that this result
can be extended to channels given by ergodic Markov chains. The ratio R of the number of
bits of the message and the number of bits of the code is called the rate of the code, i.e.

1
R = —log, N,.
n

Thus, Shannon’s bound means that any rate R < C = max H(X :Y), (the maximum being
taken over all possible input distributions) is achievable.

Holevo, Schumacher and Westmoreland [13, 21] derived an analogue of Shannon’s
bound for transmission of classical information in the form of quantum states over a mem-
oryless quantum channel defined by a completely positive map. The analogue of Shannon’s
bound is usually called the Holevo y-quantity. The assumption that the channel is memo-
ryless means that the channel map is a tensor product, or, in other words, that the noise is
uncorrelated between successive uses of a channel. This is obviously unrealistic: in actual
quantum channels, memory effects will play a role. In this paper we consider the transmis-
sion of classical information through a class of quantum channels with memory.

The first model of a channel with memory was studied by Macchiavello and Palma [17].
They showed that the transmission of classical information through two successive uses of a
quantum depolarising channel, with Markovian correlated noise, is enhanced by using inputs
entangled over the two uses. A more general model of a quantum channel with memory was
introduced by Bowen and Mancini [4] and also studied by Kretschmann and Werner [15].
In particular, in [15], the capacities of a class of quantum channels with memory, the so-
called forgetful channels were evaluated. Similar results were obtained by Bjelakovi¢ and
Boche [2]. Further, in [7], the classical capacity of a class of quantum channels with long-
term memory was obtained. The memory of the channel considered in [7] can be viewed as
a special case of a general Markovian memory, where the Markov chain is aperiodic but not
irreducible, and hence does not converge to equilibrium. Recently, there was a generalization
of the result of [7] by Bjelakovi¢ and Boche, who in [3] obtained the classical capacities of
compound and averaged quantum channels.

Another interesting special case of a channel with long-term memory is that in which
the memory is described by a periodic Markov chain. A simple example of this is a channel
given by alternating applications of two completely positive trace preserving (CPT) maps
@, and P,, with the first map being ©; or &, with probability 1/2.

In this paper we study channels with arbitrary Markovian correlated noise. This includes,
in particular, the above special cases. We show that the capacity in the general case can be
expressed in terms of the communicating classes of the underlying Markov chain.

We start the main body of our paper with some preliminaries in Sect. 2. In Sect. 3, the
quantum channel is defined and its capacity is stated in the main theorem, Theorem 1, of this
paper. In Sect. 4, we prove a special case of the direct part of this theorem, corresponding to a
Markov chain which converges to equilibrium and is hence forgetful. This section therefore
provides an alternative proof of the result of Kretschmann and Werner [15] for the classical
capacity of such a channel. This proof is extended to the case of an arbitrary Markov chain in
Sect. 5. In the latter, we employ the idea of adding a preamble to the codewords (as was done
in [7]) in order to distinguish between the different communicating classes of the Markov
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chain. The proof of the (weak) converse part of our main result (Theorem 1) is given in
Sect. 5.2.

2 Mathematical Preliminaries
Let H and K be given finite-dimensional Hilbert spaces and denote by B(H) the algebra of

linear operators on H. We also consider the tensor product algebras A, = B(H®") and the
infinite tensor product C*-algebra obtained as the strong closure

A=A, M

where we embed A, into A, in the obvious way. Similarly, we define B, = B(K®") and
Boo. A state on an algebra A is a positive linear functional ¢ on A with ¢ (1) = 1, where
1 denotes identity operator. If A is finite-dimensional then there exists a density matrix pg4
(i.e., a positive operator with Trp, = 1) such that ¢(A) = Tr(pyA), for any A € A. We
denote the states on A, by S(Aw), those on A, by S(A,), etc.

3 A Quantum Channel with Classical Memory

Let there be given a Markov chain on a finite state space I with transition probabilities
{qiir}i.iver and let {y;};c; be an invariant distribution for this chain, i.e.

Vi =) Vi @)

iel

Moreover, let ®; : B(H) — B(K) be given completely positive trace-preserving (CPT) maps
for each i € 1. Then we define a quantum channel with Markovian correlated noise, by the
CPT maps ®™ : S(A,) — S(B,) on the states of A, by

O (p™) = N ViGiir iy yia (Piy ® - @ D) (0™) €))

ilserin€l

for A € B,.

If ¢ is a state on A, and ¢, is the restriction to A,, and we write p™ = 04, > then the
states @ (p™) form a consistent (projective) system of states on B,, because of (2), and
therefore define a unique state on B, which we denote by ®.,(¢). Thus

(Poo () (A) = Tr(D™ (py,) A)

for Ae A,.

Let us consider the transmission of classical information through ®. Suppose Alice has
a set of messages, labelled by the elements of the set M,, = {1, 2, ..., M,,}, which she would
like to communicate to Bob, using the quantum channel ®. To do this, she encodes each
message into a quantum state of a physical system with Hilbert space H®", which she then
sends to Bob through n uses of the quantum channel. In order to infer the message that Alice
communicated to him, Bob makes a measurement (described by POVM elements) on the
state that he receives. The encoding and decoding operations, employed to achieve reliable
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transmission of information through the channel, together define a quantum error correcting
code (QECC). More precisely, a code C™ of size N, is given by a sequence {p", E"}",
where each p{" is a state in B(H®") and each E{" is a positive operator acting in £®", such
that Y- E” < 1. Here, 1™ denotes the identity operator in B(KX®"). Defining E\" =
1 — "M E™ yields a Positive Operator-Valued Measure (POVM) {E”} in K&, An
output i > 1 would lead to the inference that the state (or codeword) ,oi(”) was transmitted
through the channel ®™, whereas the output 0 is interpreted as a failure of any inference.

The average probability of error for the code C™ is given by

Ny
P.C™) = NL Z(] — Tr((b(n) (pl_(n))El_(">))’ “

moi—q

If there exists an ng € N such that for all n > ny, there exists a sequence of codes {C"}° ,,

of sizes N, > 2" for which P,(C") — 0 as n — oo, then R is said to be an achievable
rate.

The classical capacity of ® is defined as
C(®) :=supR, 5

where R is an achievable rate.
Let C be the set of communicating classes of the Markov chain [19] for which

VC:ZVL’ > 0. (6)

ieC

Any other classes can be disregarded. In particular, we can assume that all classes are closed.
For C € C we define

n n 1 n
O (p™) = o > Vi Gy (Pi ® - ® ) ("), 7
i i

which represents the restriction of the classical memory of the channel to the class C. Notice
that the Markov chain restricted to C € C is necessarily irreducible, and is either aperiodic
or periodic with a single period. In fact,

C= caper ) Cpeh

where Cg,.- denotes the set of communicating classes in C which are aperiodic, while Cp,,
denotes the set of communicating classes in C which are periodic.
If C € Cyper, we define, for any ensemble { p;"), pE")} of states on H®", the mean Holevo

quantity for the class C as

=n n n 1 n n n n n n
2P o)) = —[s(Zpﬁ "o’ (o) ))) — > p"8(0¢ (o) >))}. ®)
J J

n

If C € Cpe is periodic, with period L, then there exist subclasses C©, ..., C“=D such
that the Markov chain cycles through these subclasses, i.e. if i € C® theni +1 € C*+D
where the index k is taken modulo L. The subchains i +mL, m =0, 1,..., are aperiodic

and irreducible Markov chains on C%® for a fixed k.
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We write
w _ L
Sor=— Z Z Vidiip iy, inPi @ Pi, @ - Q Dy, ©)]
Yc . =
ieck) ip,..., In
so that
oY = Z L. (10)
We define
AP e = Z X dp o). (11

where fork € {0,1,...,L — 1},
Xé‘n/)( ({pyl)7 pjn)} (Z p(n)q)(n) (n) ) Zp(n)S CI)(") (ﬂ))).

Our main result is the following theorem. (We use the standard notation A for minimum
and Vv for maximum.)

Theorem 1 The classical capacity of a quantum channel with arbitrary Markovian corre-
lated noise, defined by (3), is given by

C(®) = lim sup [/\xé”’({pj”%pj“})] (12)

n—00
"0} Leee

The existence of the limit in (12) is proved in Lemma 15 of Appendix A.
Before proving Theorem 1, we first consider two special cases in which the Markov chain
has a single communicating class, one being aperiodic and irreducible, the other periodic.

4 The Irreducible Case

In this section we assume that the underlying Markov chain is irreducible but not necessarily
aperiodic (see e.g. [19]). It follows, in particular, that the invariant distribution, {y;};c;, is
unique. If the chain has period L, we denote the subclasses by C©@, ..., C¢~D. We define
channels ®{" by

Cbl(cn) =L Z Vi Z Gisiy " Giy—1.in Pi @ iy @ --- @ P, (13)

ieck) ip,...ipel

so that
=
n) _ (n)
OV = 7 E_ D7, (14)

Now, the Markov chain restricted to the subclass C*®) with transition probabilities q;jL)
is irreducible and aperiodic, and therefore ergodic. (Here where qi(j'?) denotes the n-step
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transition probability from the state i to the state j (i, j € I).) Hence, the Markov chain is
ergodic for shifts over L, and satisfies the property of convergence to equilibrium, i.e.,

ql(]"L) — Ly; asn— oo.

(Note that }_;ccw v = 1)

In the case of an aperiodic chain, this implies that the correlation in the noise, acting on
successive inputs to the channel, dies out after a sufficiently large number of uses of the
channel. Hence, in this case the channel belongs to the class of channels introduced and
studied by Kretschmann and Werner [15], and referred to as forgetful channels.

The (classical) capacity of the channel is defined in the following lemma, which is a
special case of Lemma 15 of Appendix A.

Lemma 1 Given the (periodic) irreducible channel above, define

(n) ({pyl) , pjn)} Z X (n) jn), pjn)})

where

%" (tp)" p)")) = (Z Py @ ( W)) =Y s (@ (o).
J
Then the limit
C(@)=1lim sup 3" ({p\". p{"}) (15)

’HOO{ () pmy
I "

exists.

We now formulate a quantum Feinstein Lemma, which is the analogue of Theorem 1
in [6] for irreducible Markov chains. It is given by the following theorem.

Theorem 2 (Quantum Feinstein Lemma) Suppose that ®™ is a quantum channel defined
by formula (3), where (q;, ;)i jer is the transition matrix of a (periodic) irreducible Markov
chain, and the maps ®; : B(H) — B(K) are CPT maps.

For all € > 0, there exists ng € N such that for all n > ny, there exist at least N = N, >
2MC@ =€l grates p("), el ﬁ,(\}l) on H®", and positive operators Ef"), el E[(\?) on K®" such

that Zk:l E,E") <1and
Ti[@™ (5" E" ] > 1—€ (16)

forallk=1,...,N.
The proof of this lemma is given in Sect. 4.2. In the case where the period L > 2, we use
the idea of adding a preamble to the codewords (as was done in [7]) to distinguish between

the different subclasses of the Markov chain. The construction of the preamble is discussed
in the following subsection.
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4.1 Construction of a Preamble

To distinguish between the different subclasses, C*®), of the quantum channel ®™, we add
a preamble to the input state encoding each message in the set M,. This is given by an
m-fold tensor product of suitable states (as described below). Let us first sketch the idea
behind adding such a preamble. Helstrgm [11] showed that two states o, and o,, occurring
with a priori probabilities y; and y, respectively, can be distinguished with an asymptoti-
cally vanishing probability of error, if a suitable collective measurement is performed on the
m-fold tensor products o®” and 02", for a large enough m € N. The optimal measurement
is projection-valued. The relevant projection operators, which we denote by ITt and I,
are the orthogonal projections onto the positive and negative eigenspaces of the difference
operator A,, = 0" — 5" . Here we utilize this idea to distinguish between the different sub-
classes CID,(("). If the preamble is given by a state ®®™, then, by using Helstrgm’s result, we can
construct a POVM which distinguishes between the average output states o, := @,ﬁ") (w®™)
corresponding to the different subclasses C®. The outcome of this POVM measurement
will serve in turn to determine which subclass of the channel is being used for the initial
transmission.

We first show that there exists a preamble that can distinguish between the different sub-
classes, analogous to the branches in [7]. First notice that the corresponding CPT maps dD,(C”)
need not all be distinct! However, by definition of the period, there is no internal periodicity
of these maps; otherwise the chain can be contracted to a single such period. This means,
that for any two subclasses k; < k, there exists / < L — 1 such that <I>ffl) *+ Cb,(fz)

Example Consider the simple period-2 Markov chain with 3 states given by the transition
matrix

0 1 0
@)l =2n 0 2y
0 1 0

Its equilibrium state is (yy, ¥, y3) with y, = % Given CPT maps ®,, ®,, &3 we can con-
struct the corresponding channel map ®®™. Now suppose that 2y, ®; + 2y3®3 = ®,. Then
the channel is in fact a memoryless channel: ™ = &$".

We can now choose w = a),((ll) r, such that

f=F(@ (), o) (@) <1, 17)

where we have defined the fidelity of two states as in [18],

F(o,0')=Trvol/20'c1/2, (18)
@ _ 0 Q(L—1)
Lemma 2 Let ", = wy/ ., ® g be a state as defined above, enhanced to a state on

H®L by a tensor product with states py = 11, where d = dim'H. Then
F(@"" (ol )®™), @Y (0 )®™) = 0 as m — oo. (19)

Proof Choose o > 0 so small that 1 +« < f~!. Since the subchains i + mL m =0, 1, ...
are irreducible and aperiodic Markov chains with transition matrix qi(jL) on CW ifi e C®,
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1180 N. Datta, T. Dorlas

there exists R so large that

A-a)ly;< Y. g q?  <U+a)Ly (20)

iz,...,iR,IEC(k)

foralli, j e C®.
Now let {£,}, be a POVM on B(KX®%) such that

F(o1,00) =Y _/Tr(01&) Tr(o25,), @1)

(see e.g. (9.74) in [18]) where we denote
o1 =00 (wi)) and oy =0 (W) ). (22)
Then we have

F(¢>Ii’rR+m)L((a)(L) )Qg)(mRer))7 (I)](:aner)L((a)(L) )®(mR+m)))

ki.ky ky.ky
m
R+m)L L R RL
< Z |:Tr(q)l(:ln m) ((a)](q’)kz)@)(m +m))®(gri®1( )))
Flseestm i=1

m 12
« Tr (dDI(CanR+m)((wl(i’)kz)@)(mR-Fm)) ®(€ri ® 1(RL))):|

i=l1
< > U+ ' T[VTi@ &) Tro:E,)
Flyeeestm i=1

=1+ a)" 'F(o10,)™ — 0. (23)
O

We now introduce, for all k; < k,, difference operators A,(('l"y),q, and corresponding pro-

jections l'Ikil, 1, onto their positive and negative eigenspaces, which serve to distinguish the
different possibilities, as in [7]. The difference operators are defined by
L L L L
Al = B (@)™ — @ (@) )™ 24)

The following lemma was proved in [7]:

Lemma 3 Suppose that for a given § > 0,

| Te[| AL, 11— 2] < 6. (25)
Then
m m 8
I THITE 4, (04 @F")] =1 < 5 (26)
and
— (m) . ®m 8
| T, 4, (@1 @)1 =11 < 5. 27)
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Defining

1D if ky # k and ky # k,
M= Q) I, where T, =1 ifk =k, (28)
ki <ko Hl:ikz lfkl :k,

it follows from the fact that I'I,ir1 ko ek, 1, = O, that the projections I, are also disjoint:
M, i, =0 for k; # ky. (29)

The preamble is given by the product over all pairs k; < kj:

wp = ® w,(:.)kz. (30)

k1 <ky

The following lemma then demonstrates that the preamble can distinguish between initial
subclasses k:

Lemmad Forallk=0,1,...,L —1,

: - (mL)( (m)\] _
Jim Te[ @™ (w;)] = 1. (31)
Proof By Lemma 2,
F(0" (™), P (@f™)) — 0 (32)

as m — 00. Using the inequalities [18]
Tr(A1) + Tr(Az2) — 2F (A1, A2) < |A1 — Aally
=< Tr(Ay) + Tr(Az) (33)

for any two positive operators A; and A,, we find that

where §,, — 0 as m — 00, since
Te(|AL, 1) = 190 @) — &0 (@)1 35)

Replacing m by m’ = m + R, where R € N is large enough so that (20) holds, to separate
the different classes, we have for any &,

1> Tr[ﬁ@,?“’(

o)

k1 <k

> (1—a)" [ ] [, (00" (@F™)]

ki <k
X 1_[ Tr[l'[,:r’k2 (Q;"’L)(wf’m))]
ky>k

5.\ L!

> (1—a)L<1—§> -1, (36)

since §,, = 0 as m — oo. The last inequality follows from Lemma 3. 0
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4.2 Proof of Theorem 2 (Quantum Feinstein Lemma)

Given § > 0, we fix m so large that
Te[ 1 ®" (0F")] > 1 — 8 37

forallk =0,1, ..., L — 1. The product state w?m” , defined through (30), is used as a pream-

ble to the code in order to distinguish between different initial subchannels: if p™ € A, is a

state encoding the r-th classical message, then the r-th codeword is given by ™ ® p™.
To prove Feinstein’s lemma, we follow the same steps as in the groof of Theorem 5.1

of [7] (see also [6]). First we fix [, large enough, and an ensemble {p , pj(l") such that

_ €
[C@) =2 p" 0fD] < 2. (38)

where X(IO)({ o) ;’0) }) is given by (1). We may assume that [, is incommensurate with L;

for deﬁmteness let lp =agL + 1. In the following we also assume that n is a multiple of /y:
n =mly.

Next we prove the existence of typical spaces. For this we first need to define limiting
states, and prove ergodicity.
The limiting state oy o is defined by

Groo(A) =Tr(5" A) (39)

for A € A,, where n = ml, and where a('")

given by

is a density matrix on IC%"" with K, = K®P,

a" = (GE™). (40)

These states are ergodic:

Lemma 5 The state 6y  is strongly clustering and hence completely ergodic for L-shifts,
i.e. forany A, B € B(K®"),

lim & o (AT0(B)) = Tr(5™ A) Tr(5" B). (41)

Proof Let A, B € B(K®™"0). We may assume that m is a multiple of L. Then

lim & (AT*H0(B))
§—> 00

T (o) (lo)
= lim Z i P, D Do Lol iy i

J1s-esJm+sL ieCc® ip,. I(m+vL)IOEI

X Ti[(@5, @ -+ ® iy )01 ® - @ P )A® L) Loz, ® B)]

Jm+sL
_ (o) o)
Ylinolo Z Z H(P,a Pj ) Z Z Lyilqihiz""Iimlo.imloﬂ
J1sees Jm jiseesdim ieC® in,..imig1€1
Z L (L
X q( ) . q )
Imlg+1-1 Hs—m/L)lg—1""(s—m/L)ly
il ec®
1ol s—m/L)ly
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x 2 : 6],({ m/Llg isLig+1 " “ignsspylg—1-imtsLlg
[(sLIgF1) s+ L (sL+m)lg

> Tr[d)ll QR - ®D; (p(lo) R ® p(lo))A]

lmlo
(o) (o)
X Tr[ g1 © @ Pigi (p ® - ®p, )B]. (42)
Now, because the subchains are irreducible and aperiodic,
.. (L) ;! . i
Z q, a8 = Y Lyg() (43)

n+l jeC(k)

as s — 00, if i € CW, Therefore

lim ¢o. (AT*0(B))
§—>00
(o)
§ : | |p ’ § : Ly’lqlllz qimlo_wmlo
Jm a=1 (SN ’*"10

xTr[ W® @B, (01 @ ®pi)A]

Jm
~ 1—[ p(lo)
Jm =1

Lyqg;» :» - N
Z yz ql l mlo—l ’lmlo
l

l mIO

x Tr[ ” Q- ® q> » (,0 /O) Q- ® p(IO))B]

ml

Z l_[p([()) Tr <D(mlo)(p([o) ®® p(l()))A]

JseeosJm =1
m
@) (mlg) ¢ (o) W)
x Y [Ipy Tifet (0" ® - ®@p; )B]

=Tr(5," A) Tr(5"" B). (44)
d
The existence of the entropy is well known, but here we need that it is independent of k:

Lemma 6 The mean specific entropy

Sy = lim —S(ebi’"’“)( 5EM) and  f, = Z PV p® 45)

m—00 m
exists and is independent of k.
Proof See Appendix A. ]

We now prove the existence of typical projections 1_’,((") (k=0,...,L —1) for an irre-
ducible channel with period L:

@ Springer
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Lemma 7 Given €,8 > 0, there exists my € N such that for m > mq there are subspaces
N (”) IC]%’" (n = mly), with projections Pk(”) such that

P]{(Vl)q)(")(p@)m)P(”) <2 m[Spy— J, (46)
and
Te(@)" (52" P) > 1 — 82, (47

Proof We follow Hiai and Petz [12]. Let m be so large that for m > m,,
Sy < Ls(cb“”l“)(ﬁ@m)) <Sw+te. (48)
- mlo k fo 8

Now assume that m; is a multiple of L, and let Q = {,} denote the spectrum of 3.,

and write 7, for the projection onto the eigenvector with eigenvalue A,. For any p > 0 and
X C QP put

qgx= Y, 7, Q--0®m, (49)

(hrpveenihry ) EX

and define the probability measures v, on 7 and v on Q" by
vy (X) = Tr(@P"0 (52" )gx)  and Ve (X) = Fao(qx)- (50)

By Lemma 5, v, is ergodic and by McMillan’s theorem [16] there exists a typical set

T =y evs hry) € Q7
2PIRSCRLD) <y (., Ay,))) < 27 PRSI (51)
satisfying
(T > 1 — 8 (52)

for p large enough, where hgs(Vs) is the Kolmogorov-Sinai entropy. Now,
s (Vo) = mf SHE,) < HO) =S@") <m) (sM + %) (53)

where H (v) denotes the Shannon entropy corresponding to the probability measure v. On
the other hand
his(Voo) = 11 Sy (54)
because, by positivity of the relative entropy,
S(a,k([”"l) )

— Tl'[ék(pml) lOg (1’””1)]

= Tr[ ng( P [ e @@ ,,), ®"'®”’"ﬂ

Flaeealp
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Z Tr[(f(”m‘)rrr1 ® - ®y'rrp]logTr[G(’""‘)rrr1 ® - ®m,]

For n =mly, m = pmy,and r = (r, ..., r,) we now define

()
T, ={r:Gu.....0,) e "},

(m) __
T = GOty

and
(n) (m) ®m
)S%) T (CE™).
Then
(@ G B") = o6 (8,707 ))
=T[5 7]
=0, (1) > 1 -8
Moreover,

pn) =) pn) _ (m) = (n)__(m)
Ploy B = @”kr”k Thr

=(p)
)ETk

—phgs(Voo)—e/8) (M)
EB 2~ Plhgsvoo e

= m

IA

refly

—p(my Sy —e/8) . (m)
@ 2—pmi Sy e

=(p)
ref ¢

IA

< 2—m(SM—E/8)1.

(55)

(56)

(57)

(58)

(59

(60)

This establishes the result in case m is a large enough multiple of m;. If m is not a multiple

of my, we simply pad n('") with identity operators on B(KC

lo

®(m—[m/mylmy)

O

We need a similar result for the individual states p(") This is stated in Lemma 9. To

formulate this lemma, we define density matrices X,,, in algebras

mlo @ B(’C

T Jm=1
by

{/ lf
Emlo @ p(m)q)(ml())( (0) R-® IOJ("?))»

J1sewosm

(61)
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where p('") L, ple) and p<1°), Jj€{l,2,...,J}, belongs to the maximising ensemble

(c.£. (38)). In the following we denote p}""" = pjllo) ® - ®pi, with j = (s o -+ ),

for any m € N.
Lemma 8 There exists a unique translation-invariant state ¥, on My, = U;'le My Such

that

Voo (A) = Tr (S, A) (62)

for A € M,,,. Moreover, this state is strongly clustering and therefore completely ergodic.
Proof The proof of this lemma is similar to that of Lemma 5. O

Lemma 9 Given k€{0,...,L — 1}, andasequencej:(jl,...,jm)e{l 2,...,J", let
(") be the projection onto the subspace of KC®" spanned by those eigenvectors of dD(") (p("))

for whlch the corresponding eigenvalues A , satisfy

1 _
‘—1ogx,,,+sM <<, 63)
m = 4
where
- (n) (n) o) (o)
SM—n}EI;OmZP S(@" (o) ® - @ p3)- (64)

For any & > O there exists m, such that for m > m,,

E <Tr [qf'”"” <® p§f°)> P,jjg?D >1 -8 (65)
r=1 B

Note that, just as Sy, Sy is also independent of k. It can be equivalently expressed as

L—-1

1
SM = lim — ZZPEH)S qD(n)(p(l()) ® ® IO(/(J)))

m—oo mL Jm
k=0

We now proceed with the proof of Feinstein’s lemma. This is entirely analogous to the
proof in [7], so we can be brief.

Let N=N (n) be the maximal number of states ﬁf"), ey ,61(\7) on H®" for which there
exist positive operators E f"), R E](\;') on K®" such that
() EW =Y i@ E" and ) | E{") < P fork =0,. —1,and

(i) + 315 Trl(T ® EfN @™ (f™ @ 5)] > 1 — €, and
(iii) % Ifz_()l Tr[(ﬁk ® E}Et'r))q)(cﬁ?’OL+")(w?"10 ® ,5(”))] < 27n[C(<I>)7%e].

Remark Note that we can append 17~ to all POVM elements, to reduce the proof to the
case n = mly. In the following we therefore assume n = ml for simplicity.
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For each k and each J =01 eeesm), We define

172

1/2 N
Vk(,r;) ( (n) ZE(n)> P(H)P(n)P(n) (Pk(n) _ ZElinr)> ) (66)
r=1

Clearly V,ff’].) <P YN ED.
Put

V“” Zn ®YV, ('”. (67)

This is a candidate for an additional measurement operator, E g’,’)ﬂ , for Bob with correspond-

ing input state 5, = 0" ® p™. Clearly, the condition (i) is satisfied, and we also have
g 1np PNy =@ i Y.

Lemma 10
1 L—1
_ Tr (ﬁk QV (”))qD(moL"'”) (mg) ® p—®m < 2—n[C(<I>)—%€]. (68)
L wr lp
k=0

Proof In fact we prove the estimate for each & individually:
Te[(Pix ® V@ (0" @ )] < 2715, (69)
Let Oy = ZN(”) E; (") . Note that Q; , commutes with P(") by condition (i). We have
A S e | (70)

and hence,

S(q){mlo)

_ _ _ _1
Pk(n)(}k(n)Pk(n)fz n[’”IO (PO ) 45] (7])

for m large enough.
Using this, we get

Tr(@ " V")
=T[5 (A" = Qen) PR LB (P = Q)]
_ Tr[[‘,k(n)a,k(n) Pk(n)(ﬁk(n) _ Qk,n)lﬂpk(,nz(ﬁk(n) o Qk,n)l/z]

S((D('"lo) ~®@m

<27l IRV (72)

However, by Lemma 9,

(lo) (mlg)

(n) 1
T(P(ml()))<2m[SM+ <" Ut 257, S o] +ael (73)
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Hence
(mly) , —@m (mloj (n), (mly) 1
Tr(5;fn)V;ff1j)) <2 s (@GR N=X; p O S@ (0" O+ €] < g nlC@)-3el, (74)
The inequality (69) now follows from the definition of w; and (20). O

By maximality of N, it now follows that the condition (ii) above cannot hold and, upon
taking expectations,

Corollary 1

P‘

L—
. Z TI' (nk ® V(n))cb(n10M+n)( (moL) ®)5r(n))]) <l—e. (75)
k=0

We also need the following

Lemma 11 Assume n > 38. Then, for n large enough,

L—
Z (T[T ® B P P (0™ @ p)")]) > 1= 1. (76)
k=0 B

Proof We write
B({(f1 @ A7 A A9 w0 @ o))
= (1~ B(T{of] L)) (o)1 F) )
—E(Te[o ] A" P A= P)]). (77)

By Lemma 9, the first term is > (1 — a)(1 — §) > 1 — § provided « is small enough. The
last two terms can be bounded using Cauchy-Schwarz and Lemma 7:

E(Tr[o") (1 = P")P"]) < (Tr[5" 1 = A™])* <8 (78)

and
E(Tr[o" P P (1 = PM)]) <6. (79)
O

Lemma 12 Assume n < %e and write

Qkn Z E". (80)
Then for n large enough,
=

7 2 T ® Qe @™ (0™ @ p}”)] = (). 81)
k=0
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Proof Define
0, =P" —(P" — Qe (82)

By the above corollary,

1—e€
1 L-1 _ _ B
> = D BN @ (B = 04 )P (B = 0 @™ (@™ @ 7))
k=0
1 .
— Z E(Tr[(l'[k ® Pk(n)P(n)Pk(n))q)(moM+n)( (mqoL) ® ~(n))])
k=0
1 L—1
SR8 (R P 0L + 0L, P )0 (00 5 )
k=0
=
+ E(Tr[ (M ® Q;c,,P("> 0} DM (™D @ 5m)]). 83)
k=0

Since the last term is positive, we have, by Lemma 11,

L—
— Z Tr H ® Pk(ﬂ)P(n) Qk L+ Qk nPk(nJ)Pk(n)))q)(moM+n)( (mol) & p(n))])
k=0

h

>e—n>2n. (84)

On the other hand, using Cauchy-Schwarz for each term, the left-hand side is bounded
by

h
‘_

Tr[ (M @ QF,) @™ (0" ® p]"”)]- (85)

~
-~
I
(=)

To complete the proof, we simply remark that

Qun = (Q;,). (86)
]

It now follows that for n large enough, N (1) > (7)22"1C®~3¢l_ We take the following
states as codewords:

pr(moMHn) (mo) ®p ~(n) 87)
For n sufficiently large we then have
N = Nygmor = N () > ()?2"1C@)=3¢] > gml4mic@)=e] (88)

To complete the proof, we need to show that the set {Ek")}k | satisfies (16). However,
this follows immediately from condition (ii). O
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5 The General Case
5.1 Proof of the Direct Part of Theorem 1

In the general case we need to distinguish first between classes. This is done by introducing
another preamble as for subclasses of periodic classes. The analysis is exactly the same as
n [7] and we simply state the necessary lemma:

Lemma 13 If C and C' are two different periodic classes with periods L(C) and L(C")
respectively, then there exists a state a)(CL)C, on H®L, where L = L(C)L(C") such that

F(o (0f 1)), 24P (0 )®") — 0 (89)

as m — Q.

The difference operators are given by

AT =y @I (g ()®") — o 08 (g 1)) (90)

and the corresponding projections onto positive and negative eigenvalues are denoted T c.o
We define

17D if C'#Cand C" % C,
e = ® F(CC,)C/,, where FC, =1 Ho e IFC"=C, 1)
@.cn M. ifC’=C.

It follows from the fact that HJCr,Y cr s er =0, that the projections I1¢ are also disjoint:
I:[C] I:[CZ =0 for Cl ;ﬁ C2. (92)

The preamble is given by the product over all pairs C, C':

va= & ol (93)

(c,ch

The following lemma then demonstrates that the preamble can distinguish between
classes C:

Lemma 14 For all classes C,

lim Tr[c @ (0f")] = 1. (94)

m—00

The proof of the direct part of Theorem 1 now follows the same lines as that of Theo-
rem 2. Note that the maximizing ensemble { p(l‘)) ;ZO)} of the minimum

N\ x&dp)” e

CeC

is in general not the same as that for the individual Holevo quantities )Zg') However, the
Lemmas 7 and 9 still hold and yield typical spaces with typical projections Pé . and Pg’,)”
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for each class C. The preamble now consists of ;""" ® @ <Cper ©C. 2"¢ . The POVM opera-
tors have the form

LO-1
CeC
The remainder of the proof is a carbon copy of that for the irreducible case. ]

5.2 Proof of the Converse Part of Theorem 1

In this section we prove that it is impossible for Alice to transmit classical messages reliably
to Bob through the channel ® defined by (3) at arate R > C(®). This is the (weak) converse
part of Theorem 1, in the sense that the probability of error does not tend to zero asymptot-
ically as the length of the code increases, for any code with rate R > C(®). To prove the
weak converse, suppose that Alice encodes messages labelled by o € M,, by states p(”) in
B(H®"). Let the corresponding outputs for the class C of the channel be denoted by o(f"é,
ie.

0.l = ¢ (o). (95)

Further define

1

= (n) (n)

GCn = |M | O‘al.lC" (96)
aem,

Let Bob’s POVM elements corresponding to the codewords p be denoted by E™, o =
1,..., |M,|. We may assume that Alice’s messages are produced uniformly at random from
the set M,,. Then Bob’s average probability of error is given by

1
| M, |

Tr [d)(n) (p(n))E(n)] 97)
aeMy

We also define the average error corresponding to the class C of the channel as

1
~(n) ._ ®n )y (n)
Pec: Tr[®c" (0" E, (98)
s |Mn| aEM [ ]
so that
P =) veple (99)
CeC

Let X™ be a random variable with a uniform distribution over the set M,,, characterizing
the classical message sent by Alice to Bob. Let Yé") be the random variable corresponding to
Bob’s inference of Alice’s message, when the codeword is transmitted through the class C.
It is defined by the conditional probabilities

PIY" =B | X" =al =THOL (0 Ef1. (100)
By Fano’s inequality,

h(p{e) + pelog(IMul = D 2 HX ™ Y¢") = HX™) = H(X™ :¥¢"). (101)
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Here X(-) denotes the binary entropy and H (-) denotes the Shannon entropy. By the Holevo
bound, for C € C,p. we have

HX™ v
1 1

< S (D(n)(p;ﬂ))> _ S CD(”)(po(ln))

<|Mn|a§n ¢ |Mn|a§” (®c (™)

1
Z (n)
=nx s P , (102)
C(=|Mn| }aemn)

where xc ({WIW P8 Yaerm,) is given by (8).
For C € Cp,,, with period L,

HX™ v

<s(
| M, |

1
[ M, ]

> Y el “”)) ML S(%ZW&@S’)))

aEM, 1€C aeEMpy ieC

) < 3" a2 (o) IMI > LS g <n>)

aeMy, ieC peM, IEC

Z Z < (n)(pc(tn))

aeMy ieC

el

ieC |M|

-(n) 1 (n)}) 103
—re <{|Mn|"’“ ' (1o

In the above, we use the convexity of the relative entropy S(o|w) := Tro (logo — logw),
for density matrices ¢ and w. See [18, 20].
Therefore, for any class C we have the upper bound

1
|M | Z (Vl)( (”)))

BeM,

IM |L

1
H(X(") Y(n)) <nX(n) <{ v l’p;n)}) . (104)

Inserting this into Fano’s inequality, (101), now yields

n n 1 n
h(pE) + b log IM,| = log M| — ({W l,pf,)} ) (105)

However, since
1
C(@) = )\ xc <{ ,p;">} > (106)
C/E\C [M,]
and R = %log |IM, | > C(P), there must be at least one class C such that

ﬁ(n) >1— C(CD) + 1/"

o > ——>0. (107)
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We conclude from (99) and (107) that

ﬁ,ﬁ") > (1 _ M) /\ ve. (108)

R
CeC

O

Remark Note that the strong converse property [9, 24] does not hold for general Markovian
channels. For example, for a convex combination of memoryless channels:?

M

O™ (p™) = Zyiq)i?@”(p(")), (109)
i=1

where ®@; : B(H) — B(), Bob’s error probability does not tend to 1 asymptotically in n for
arate R, such that C(®) < R < C(®), where

_ M
@ =\/x"

i=I
and y;* denotes the Holevo capacity [13, 21] of the memoryless channel ®;.
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work was supported by the European Commission through the Integrated Projects SECOQC and FET/QIPC
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Appendix A

Lemma 15 If ® is a quantum channel with memory of the form (3). Then the limit in (12)
exists. In particular, the limit in (15) exists.

Proof Denote

Bn=sup N\ xAp", @ (")) (110)
(pj-") ,pf-")) cec

We shall prove that for any § > O there exist ny and m such that for all n’ > ny and n > mon’,
Xn = Xw — 8. This proves the lemma because obviously, 0 < y,, <logdim /C, and it follows
that

liminf %, > % — 8

n—00

and hence liminf,_,  x, > limsup,_, ., X, — 8 where 8 > 0 is arbitrary.

2 A classical version of such a channel was introduced by Jacobs [14] and studied further by Ahlswede [1],
who obtained an expression for its capacity.
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To prove the statement, let n’ be large and suppose that { p(” ), pj(." )} is a maximising

ensemble for (110), with n replaced by n’. Given n > n’, putm = [n/n’l and [ =n — mn’.

Define the states ,0(") K, pﬁ,") ® ,oj([)+1 where p}l) is the reduced state on H®'. Then

p® =@ p" @ p?, with 5™ =3, p(") ™) We now write for any class C € C,

o= Y Yy ik b

Via Vims1

X o (i, 1) @+ @ T (i i) @ 6 (ims1 ilyir)s (111)

where

Uén )(i, i") = Z Yidiindiyiz *** YGiy_yi’

iyl _1€C
X (P, ® Py @ -+ ® D) (") (112)

and similarly for oél)(i ,i"). Let y = A, v:. Using positivity of the density operators and
the fact that ¢;; <1 < y;/y, we obtain the simple operator inequality

n) = | R 2y ) = _
PP = SO (N @ ® 0 (0 ) ® ¢ (5"). (113)

Inserting this into the definition of S(®® (5™)) and using the operator monotonicity of
the logarithm and the fact that (y;) is the equilibrium distribution, i.e. >, ; viqij = v;, we
obtain

S@L(p™)) = mS(@E(5")) + S(@L (7)) + mlogy. (114)
On the other hand, by subadditivity,

S@L(p)") = Y S@E (01" + S@L (o) ) (115)
r=1
so that
=n n n mn/ = m
X (" @ (o)) = —= o + —logy, (116)
forall C eC. a

Lemma 16 The mean entropy

m—0o0

! (mlg)
Syx = lim m—los(ap opm) (117)
is independent of k.

Proof We write in a similar way as above

GG =Y Vi Gy (P @ Dy @ @ By, @ D(FE™),  (118)

iz,m,imlo_l el
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and

q/ i _ o N — — . .
cb(mlo)( ®m —L Z Z Z N 5 Wi, NG DG i)

i.i'eC®) e+l inel vir

! m /! m—
— 5O () ® T (), (119)

min

where yriﬁl)] = A;ccw vi- Here we use the assumption that [y = bL + 1. It follows that

S(@"™ (5;™) < S@ (hy) + S(T " (5, ") +In(yaaL). - (120)

This proves that Sy, ¢ < Sy .x+1, and by cyclicity they must all be equal. O
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